Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.046
Filtrar
1.
Commun Biol ; 7(1): 545, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714724

RESUMO

CircRNAs are covalently closed, single-stranded RNA that form continuous loops and play a crucial role in the initiation and progression of tumors. Cancer stem cells (CSCs) are indispensable for cancer development; however, the regulation of cancer stem cell-like properties in gastric cancer (GC) and its specific mechanism remain poorly understood. We elucidate the specific role of Circ-0075305 in GC stem cell properties. Circ-0075305 associated with chemotherapy resistance was identified by sequencing GC cells. Subsequent confirmation in both GC tissues and cell lines revealed that patients with high expression of Circ-0075305 had significantly better overall survival (OS) rates than those with low expression, particularly when treated with postoperative adjuvant chemotherapy for GC. In vitro and in vivo experiments confirmed that overexpression of Circ-0075305 can effectively reduce stem cell-like properties and enhance the sensitivity of GC cells to Oxaliplatin compared with the control group. Circ-0075305 promotes RPRD1A expression by acting as a sponge for corresponding miRNAs. The addition of LF3 (a ß-catenin/TCF4 interaction antagonist) confirmed that RPRD1A inhibited the formation of the TCF4-ß-catenin transcription complex through competitive to ß-catenin and suppressed the transcriptional activity of stem cell markers such as SOX9 via the Wnt/ß-catenin signaling pathway. This leads to the downregulation of stem cell-like property-related markers in GC. This study revealed the underlying mechanisms that regulate Circ-0075305 in GCSCs and suggests that its role in reducing ß-catenin signaling may serve as a potential therapeutic candidate.


Assuntos
Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas , RNA Circular , Fatores de Transcrição SOX9 , Neoplasias Gástricas , Fator de Transcrição 4 , beta Catenina , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Humanos , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , beta Catenina/metabolismo , beta Catenina/genética , RNA Circular/genética , RNA Circular/metabolismo , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Masculino , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade
2.
Int J Biol Sci ; 20(7): 2686-2697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725852

RESUMO

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. Breast cancer stem cells (BCSCs) are believed to play a crucial role in the carcinogenesis, therapy resistance, and metastasis of TNBC. It is well known that inflammation promotes stemness. Several studies have identified breast cancer-associated gene 2 (BCA2) as a potential risk factor for breast cancer incidence and prognosis. However, whether and how BCA2 promotes BCSCs has not been elucidated. Here, we demonstrated that BCA2 specifically promotes lipopolysaccharide (LPS)-induced BCSCs through LPS induced SOX9 expression. BCA2 enhances the interaction between myeloid differentiation primary response protein 88 (MyD88) and Toll-like receptor 4 (TLR4) and inhibits the interaction of MyD88 with deubiquitinase OTUD4 in the LPS-mediated NF-κB signaling pathway. And SOX9, an NF-κB target gene, mediates BCA2's pro-stemness function in TNBC. Our findings provide new insights into the molecular mechanisms by which BCA2 promotes breast cancer and potential therapeutic targets for the treatment of breast cancer.


Assuntos
Lipopolissacarídeos , Células-Tronco Neoplásicas , Fatores de Transcrição SOX9 , Humanos , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Feminino , Lipopolissacarídeos/farmacologia , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Regulação para Cima , Transdução de Sinais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Regulação Neoplásica da Expressão Gênica
3.
Cell Biochem Funct ; 42(3): e4000, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566395

RESUMO

Tongue squamous cell carcinoma (TSCC) is a prevalent form of oral malignancy, with increasing incidence. Unfortunately, the 5-year survival rate for patients has not exceeded 50%. Studies have shown that sex-determining region Y box 9 (SOX9) correlates with malignancy and tumor stemness in a variety of tumors. To investigate the role of SOX9 in TSCC stemness, we analyzed its influence on various aspects of tumor biology, including cell proliferation, migration, invasion, sphere and clone formation, and drug resistance in TSCC. Our data suggest a close association between SOX9 expression and both the stemness phenotype and drug resistance in TSCC. Immunohistochemical experiments revealed a progressive increase of SOX9 expression in normal oral mucosa, paracancerous tissues, and tongue squamous carcinoma tissues. Furthermore, the expression of SOX9 was closely linked to the TNM stage, but not to lymph node metastasis or tumor diameter. SOX9 is a crucial gene in TSCC responsible for promoting the stemness function of cancer stem cells. Developing drugs that target SOX9 is extremely important in clinical settings.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Neoplasias da Língua , Humanos , Carcinoma de Células Escamosas/patologia , Neoplasias da Língua/metabolismo , Linhagem Celular Tumoral , Neoplasias Bucais/genética , Língua/metabolismo , Língua/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
4.
Arch Dermatol Res ; 316(5): 134, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662224

RESUMO

Exploration of gene expression variations is a potential source to unravel biological pathways involved in pathological changes in body and understand the mechanism underneath. Vitiligo patients were explored for gene expression changes transcriptionally at perilesional site in comparison to normal site of same patients for melanogenesis pathway (TYR, DCT & TYRP1) cell adhesion (MMPs & TIMP1), cell survival (BCL2 & BAX1) as well as proliferation, migration & development (SOX9, SOX10 & MITF) regulatory system, using skin biopsy samples. Results were also compared with changes in gene expression for melanocytes under stress after hydrogen peroxide treatment in-vitro. Gene amplification was carried out via real time PCR. We found increased expression of proliferation, migration & development regulatory genes as well as melanogenesis pathway genes at perilesional site of patients. In-vitro study also supports induced MITF expression and disturbed melanogenesis in melanocytes under stress. Expression level ratio of cell survival regulatory genes' (BCL2/BAX1) as well as cell adhesion regulatory genes (MMPs/TIMP1) was observed upregulated at patient's perilesional site however downregulated in hydrogen peroxide treated melanocytes in-vitro. Observed upregulated gene expression at perilesional site of patients may be via positive feedback loop in response to stress to increase cell tolerance power to survive against adverse conditions. Gene expression analysis suggests better cell survival and proliferation potential at perilesional site in vitiligo patients. It seems in-vivo conditions/growth factors supports cells to fight for survival to accommodate stressed conditions.


Assuntos
Sobrevivência Celular , Peróxido de Hidrogênio , Melanócitos , Vitiligo , Humanos , Vitiligo/genética , Vitiligo/patologia , Melanócitos/metabolismo , Melanócitos/patologia , Sobrevivência Celular/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Masculino , Adulto , Feminino , Proliferação de Células/genética , Pele/patologia , Pele/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Pessoa de Meia-Idade , Adulto Jovem , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Biópsia , Adolescente , Adesão Celular/genética
5.
Signal Transduct Target Ther ; 9(1): 96, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38653754

RESUMO

The translocation of YAP from the cytoplasm to the nucleus is critical for its activation and plays a key role in tumor progression. However, the precise molecular mechanisms governing the nuclear import of YAP are not fully understood. In this study, we have uncovered a crucial role of SOX9 in the activation of YAP. SOX9 promotes the nuclear translocation of YAP by direct interaction. Importantly, we have identified that the binding between Asp-125 of SOX9 and Arg-124 of YAP is essential for SOX9-YAP interaction and subsequent nuclear entry of YAP. Additionally, we have discovered a novel asymmetrical dimethylation of YAP at Arg-124 (YAP-R124me2a) catalyzed by PRMT1. YAP-R124me2a enhances the interaction between YAP and SOX9 and is associated with poor prognosis in multiple cancers. Furthermore, we disrupted the interaction between SOX9 and YAP using a competitive peptide, S-A1, which mimics an α-helix of SOX9 containing Asp-125. S-A1 significantly inhibits YAP nuclear translocation and effectively suppresses tumor growth. This study provides the first evidence of SOX9 as a pivotal regulator driving YAP nuclear translocation and presents a potential therapeutic strategy for YAP-driven human cancers by targeting SOX9-YAP interaction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Núcleo Celular , Fatores de Transcrição SOX9 , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Transporte Ativo do Núcleo Celular/genética , Camundongos , Linhagem Celular Tumoral , Animais , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
6.
Invest Ophthalmol Vis Sci ; 65(2): 25, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345552

RESUMO

Purpose: To evaluate the expression of sry-box transcription factor 9 (SOX9) in orbital fibroblasts (OFs) of thyroid eye disease (TED) and to find its potential role and underlying mechanism in orbital fibrosis. Methods: OFs were cultured from orbital connective tissues obtained from patients with TED (n = 10) and healthy controls (n = 6). SOX9 was depleted by small interfering RNA or overexpressed through lentivirus transduction in OFs. Fibroblast contractile activity was measured by collagen gel contraction assay and proliferation was examined by EdU assay. Transcriptomic changes were assessed by RNA sequencing. Results: The mRNA and protein levels of SOX9 were significantly higher in OFs cultured from patients with TED than those from healthy controls. Extracellular matrix-related genes were down-regulated by SOX9 knockdown and up-regulated by SOX9 overexpression in TED-OFs. SOX9 knockdown significantly decrease the contraction and the antiapoptotic ability of OFs, whereas the overexpression of SOX9 increased the ability of transformation, migration, and proliferation of OFs. SOX9 knockdown suppressed the expression of phosphorylated ERK1/2, whereas its overexpression showed the opposite effect. Epidermal growth factor receptor (EGFR) is one of the notably down-regulated genes screened out by RNA sequencing. Chromatin immunoprecipitation-qPCR demonstrated SOX9 binding to the EGFR promoter. Conclusions: A high expression of SOX9 was found in TED-OFs. SOX9 can activate OFs via MAPK/ERK1/2 signaling pathway, which in turn promotes proliferation and differentiation of OFs. EGFR was a downstream target gene of SOX9. SOX9/EGFR can be considered as therapeutic targets for the treatment of orbital fibrosis in TED.


Assuntos
Oftalmopatia de Graves , Humanos , Oftalmopatia de Graves/genética , Oftalmopatia de Graves/metabolismo , Órbita/metabolismo , Sistema de Sinalização das MAP Quinases , Receptores ErbB/metabolismo , Fibroblastos/metabolismo , Fibrose , Células Cultivadas , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
7.
Cancer Biol Ther ; 25(1): 2304161, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38226837

RESUMO

BACKGROUND: Lung cancer is the deadliest form of malignancy and the most common subtype is non-small cell lung cancer (NSCLC). Hypoxia is a typical feature of solid tumor microenvironment. In the current study, we clarified the effects of hypoxia on stemness and metastasis and the molecular mechanism. METHODS: The biological functions were assessed using the sphere formation assay, Transwell assay, and XF96 extracellular flux analyzer. The protein levels were detected by western blot. The lactylation modification was assessed by western blot and immunoprecipitation. The role of SOX9 in vivo was explored using a xenografted tumor model. RESULTS: We observed that hypoxia promoted sphere formation, migration, invasion, glucose consumption, lactate production, glycolysis, and global lactylation. Inhibition of glycolysis suppressed cell stemness, migration, invasion, and lactylation. Moreover, hypoxia increased the levels of SOX9 and lactylation of SOX9, whereas inhibition of glycolysis reversed the increase. Additionally, knockdown of SOX9 abrogated the promotion of cell stemness, migration, and invasion. In tumor-bearing mice, overexpression of SOX9 promoted tumor growth, and inhibition of glycolysis suppressed tumor growth. CONCLUSION: Hypoxia induced the lactylation of SOX9 to promote stemness, migration, and invasion via promoting glycolysis. The findings suggested that targeting hypoxia may be an effective way for NSCLC treatment and reveal a new mechanism of hypoxia in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Fatores de Transcrição SOX9 , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Glicólise , Hipóxia , Neoplasias Pulmonares/patologia , Microambiente Tumoral , Humanos , Fatores de Transcrição SOX9/metabolismo
8.
Sci Rep ; 14(1): 1483, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233470

RESUMO

At the molecular level, triple-negative breast cancer (TNBC) is frequently categorized as PAM50 basal-like subtype, but despite the advances in molecular analyses, the clinical outcome for these subtypes is uncertain. Long non-coding RNAs (lncRNAs) are master regulators of genes involved in hallmarks of cancer, which makes them suitable biomarkers for breast cancer (BRCA) diagnosis and prognosis. Here, we evaluated the regulatory role of lncRNA SOX9-AS1 in these subtypes. Using the BRCA-TCGA cohort, we observed that SOX9-AS1 was significantly overexpressed in basal-like and TNBC in comparison with other BRCA subtypes. Survival analyzes showed that SOX9-AS1 overexpression was associated with a favorable prognosis in TNBC and basal-like patients. To study the functions of SOX9-AS1, we determined the expression levels in a panel of nine BRCA cell lines finding increased levels in MDA-MB-468 and HCC1187 TNBC. Using subcellular fractionation in these cell lines, we ascertained that SOX9-AS1 was located in the cytoplasmic compartment. In addition, we performed SOX9-AS1 gene silencing using two short-harping constructs, which were transfected in both cell models and performed a genome-wide RNA-seq analysis. Data showed that 351 lncRNAs and 740 mRNAs were differentially expressed in MDA-MB-468 while 56 lncRNAs and 100 mRNAs were modulated in HCC1187 cells (Log2FC < - 1.5 and > 1.5, p.adj value < 0.05). Pathway analysis revealed that the protein-encoding genes potentially regulate lipid metabolic reprogramming, and epithelial-mesenchymal transition (EMT). Expression of lipid metabolic-related genes LIPE, REEP6, GABRE, FBP1, SCD1, UGT2B11, APOC1 was confirmed by RT-qPCR. Functional analysis demonstrated that the knockdown of SOX9-AS1 increases the triglyceride synthesis, cell migration and invasion in both two TNBC cell lines. In conclusion, high SOX9-AS1 expression predicts an improved clinical course in patients, while the loss of SOX9-AS1 expression enhances the aggressiveness of TNBC cells.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , RNA Longo não Codificante/metabolismo , Reprogramação Metabólica , Movimento Celular/genética , Lipídeos , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Membrana/metabolismo
9.
Nanoscale ; 16(2): 833-847, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38093712

RESUMO

Astrocytes are highly activated following brain injuries, and their activation influences neuronal survival. Additionally, SOX9 expression is known to increase in reactive astrocytes. However, the role of SOX9 in activated astrocytes following ischemic brain damage has not been clearly elucidated yet. Therefore, in the present study, we investigated the role of SOX9 in reactive astrocytes using a poly-lactic-co-glycolic acid (PLGA) nanoparticle plasmid delivery system in a photothrombotic stroke animal model. We designed PLGA nanoparticles to exclusively enhance SOX9 gene expression in glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Our observations indicate that PLGA nanoparticles encapsulated with GFAP:SOX9:tdTOM reduce ischemia-induced neurological deficits and infarct volume through the prostaglandin D2 pathway. Thus, the astrocyte-targeting PLGA nanoparticle plasmid delivery system provides a potential opportunity for stroke treatment. Since the only effective treatment currently available is reinstating the blood supply, cell-specific gene therapy using PLGA nanoparticles will open a new therapeutic paradigm for brain injury patients in the future.


Assuntos
Lesões Encefálicas , Nanopartículas , Acidente Vascular Cerebral , Humanos , Animais , Astrócitos/metabolismo , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Lesões Encefálicas/metabolismo , Peptídeos/farmacologia , Encéfalo/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/farmacologia
10.
BMC Pulm Med ; 23(1): 421, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919693

RESUMO

OBJECTIVE: SOX9 has been shown to be related to the metastasis of various cancers. Recently, it has been reported that SOX9 plays a regulatory role in lung adenocarcinoma (LUAD) cell metastasis, but the specific mechanism remains to be explored. Therefore, the objective of this study was to observe the effect and mechanism of SOX9 on the invasion and migration of LUAD cells. METHODS: RT-qPCR was applied to observe the expression of SOX9 and RAP1 in tumor tissues and corresponding normal lung tissues collected from LUAD patients. Co-immunoprecipitation and Pearson correlation to analyze the expression correlation of SOX9 with RAP1. To observe the role of SOX9, the invasion and migration levels of LUAD A549 cells in each group were observed by Transwell invasion assay and Scratch migration assay after knocking down or overexpressing SOX9. Besides, the expression levels of RAP1 pathway-related proteins (RAP1, RAP1GAP and RasGRP33) were observed by RT-qCPR or western blot. Subsequently, RAP1 was overexpressed and SOX9 was knocked down in A549 cells, and then the cell invasion/migration level and RAP1 pathway activity were assessed. RESULTS: The expression levels of SOX9 and RAP1 in tumor tissues and A549 cells of LUAD patients were significantly increased and positively correlated. Overexpression of SOX9 or RAP1 alone in A549 cells enhanced the invasion and migration ability of cells, as well as up-regulated the expression levels of RAP1, RAP1GAP and RasGRP33. However, knocking down SOX9 decreased cell invasion and migration levels and weakened the activity of RAP1 pathway. Notably, overexpressing RAP1 while knocking down SOX9 significantly activated RAP1 pathway and promoted cell invasion and migration. CONCLUSION: Overexpression of SOX9 in LUAD can significantly activate the RAP1 signaling pathway and promote cell invasion and migration.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Transdução de Sinais , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
11.
Am J Dermatopathol ; 45(12): 835-838, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37883950

RESUMO

ABSTRACT: An 87-year-old woman presented with a pedunculated nodule of 1.2 × 1.2 × 0.6 cm on her left cheek. Microscopic examination of the lesion revealed bowenoid and rosette-like basaloid components, resembling Bowen disease and neuroendocrine carcinoma, respectively. Immunohistochemically, both components were positive for Wnt signaling pathway molecules-nuclear/cytoplasmic beta-catenin, lymphoid enhancer binding factor 1 (LEF1), and caudal type homeobox 2 (CDX2)-and the adnexal marker SRY-box transcription factor 9 (SOX9). Unlike neuroendocrine tumors and basal cell carcinomas, the basaloid component in the present case was negative for chromogranin A, INSM1, synaptophysin, and p40. Previously reported cases of similar CDX2-positive lesions were diagnosed as squamous cell carcinoma with enteric adenocarcinomatous differentiation and basaloid cutaneous carcinoma with a primitive cytomorphology. However, the lesion in the present case was simultaneously positive for SOX9, indicating adnexal differentiation. In particular, the expression of multiple Wnt signaling pathway molecules indicates follicular differentiation despite the absence of morphological follicular features, such as shadow cells. Moreover, shared immunopositivity for SOX9, CDX2, nuclear/cytoplasmic beta-catenin, and LEF1 by both bowenoid and basaloid components indicated that the bowenoid component did not represent Bowen disease but a part of the adnexal tumor, and that the basaloid component was not a tumor-to-tumor metastasis. After complete excision, no recurrence has been observed for 5 months. The findings of the present case expand the histological spectrum of cutaneous adnexal tumors with follicular immunophenotypic differentiation.


Assuntos
Doença de Bowen , Carcinoma Basocelular , Carcinoma de Apêndice Cutâneo , Neoplasias Cutâneas , Humanos , Feminino , Idoso de 80 Anos ou mais , beta Catenina/metabolismo , Via de Sinalização Wnt , Neoplasias Cutâneas/patologia , Carcinoma Basocelular/metabolismo , Proteínas Repressoras/metabolismo , Fator de Transcrição CDX2 , Fatores de Transcrição SOX9/metabolismo
12.
Cell Transplant ; 32: 9636897231193073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37737125

RESUMO

Angiogenesis is strongly associated with ovarian hyperstimulation syndrome (OHSS) progression. Early growth response protein 1 (EGR1) plays an important role in angiogenesis. This study aimed to investigate the function and mechanism of EGR1 involved in OHSS progression. RNA-sequencing was used to identify differentially expressed genes. In vitro OHSS cell model was induced by treating KGN cells with human chorionic gonadotropin (hCG). In vivo OHSS model was established in mice. The expression levels of EGR1, SOX1, and VEGF were determined by Quantitative Real-Time polymerase chain reaction (qRT-PCR), Western blot, immunofluorescence staining, and immunochemistry assay. The content of VEGF in the culture medium of human granulosa-like tumor cell line (KGN) cells was accessed by the ELISA assay. The regulatory effect of EGR1 on SRY-box transcription factor 9 (SOX9) was addressed by luciferase reporter assay and chromatin immunoprecipitation. The ERG1 and SOX9 levels were significantly upregulated in granulosa cells from OHSS patients and there was a positive association between EGR1 and SOX9 expression. In the ovarian tissues of OHSS mice, the levels of EGR1 and SOX9 were also remarkedly increased. Treatment with hCG elevated the levels of vascular endothelial growth factor (VEGF), EGR1, and SOX9 in KGN cells. Silencing of EGR1 reversed the promoting effect of hCG on VEGF and SOX9 expression in KGN cells. EGR1 transcriptionally regulated SOX9 expression through binding to its promoter. In addition, administration of dopamine decreased hCG-induced VEGF in KGN cells and ameliorated the progression of OHSS in mice, which were companied with decreased EGR1 and SOX9 expression. EGR1 has a promoting effect on OHSS progression and dopamine protects against OHSS through suppression of EGR1/SOX9 cascade. Our findings may provide new targets for the treatment of OHSS.


Assuntos
Síndrome de Hiperestimulação Ovariana , Animais , Feminino , Humanos , Camundongos , Gonadotropina Coriônica/farmacologia , Gonadotropina Coriônica/genética , Gonadotropina Coriônica/metabolismo , Dopamina , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Síndrome de Hiperestimulação Ovariana/genética , Síndrome de Hiperestimulação Ovariana/induzido quimicamente , Síndrome de Hiperestimulação Ovariana/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Cell Signal ; 111: 110854, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37611648

RESUMO

BACKGROUND: Recent research has highlighted the versatile functions of long non-coding RNAs (lncRNAs) in the onset and progression of various malignancies. Still, insufficient knowledge is available on how lnc-SOX9-4 functions in colorectal cancer (CRC) progression. METHODS: Bioinformatics analysis was used to identify a novel lncRNA (lnc-SOX9-4), and the expression pattern of the RNA in CRC was verified using qRT-PCR. Gene ontology (GO) term analysis and Gene set enrichment analysis (GSEA) were implemented for the identification of the related mechanisms and roles of lnc-SOX9-4. Immune infiltration analysis was conducted for assessment of how lnc-SOX9-4 is linked to tumor immune cell infiltration level. Both in vitro and in vivo phenotype analyses were conducted for scrutinizing how lnc-SOX9-4 impacts the proliferation and metastasis of CRC. RNA pulldown, mass spectrometry analysis, fluorescent in situ hybridization (FISH), western blotting, and RIP assay aided in verifying lnc-SOX9-4 mechanisms linked to CRC progression. RESULTS: An upregulation of lnc-SOX9-4 was observed in the sample CRC cells and tissues. Elevated lnc-SOX9-4 levels showed a positive association with poor clinical prognosis. Lnc-SOX9-4 was closely correlated to several types of immune infiltrating cells. Functionally, the knockdown of lnc-SOX9-4 significantly inhibited CRC cell proliferation, migration, and invasion abilities. Mechanistically, YBX1 was identified as lnc-SOX9-4, specifically interacting protein in the nucleus. Lnc-SOX9-4 could stabilize YBX1 protein levels by inhibiting poly-ubiquitination and degradation of YBX1. Furthermore, phenotype rescue experiments reveal that lnc-SOX9-4 enhanced the CRC cellular potential to proliferate and metastasize by regulating YBX1 levels. CONCLUSIONS: Lnc-SOX9-4 promoted CRC progression by suppressing cytoplasmic translocation and promoting protein levels of YBX1 can serve as novel treatment targets for diagnosing and treating CRC.


Assuntos
Neoplasias Colorretais , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Hibridização in Situ Fluorescente , RNA/metabolismo , Ubiquitinação , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
14.
Life Sci Alliance ; 6(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37532283

RESUMO

Estradiol and progesterone are the primary sex steroids produced by the ovary. Upon luteinizing hormone surge, estradiol-producing granulosa cells convert into progesterone-producing cells and eventually become large luteal cells of the corpus luteum. Signaling pathways and transcription factors involved in the cessation of estradiol and simultaneous stimulation of progesterone production in granulosa cells are not clearly understood. Here, we decipher that phosphorylated ERK1/2 regulates granulosa cell steroidogenesis by inhibiting estradiol and inducing progesterone production. Down-regulation of transcription factor FOXL2 and up-regulation of SOX9 by ERK underpin its differential steroidogenic function. Interestingly, the incidence of SOX9 is largely uncovered in ovarian cells and is found to regulate FOXL2 along with CYP19A1 and STAR genes, encoding rate-limiting enzymes of steroidogenesis, in cultured granulosa cells. We propose that the novel ERK1/2-SOX9/FOXL2 axis in granulosa cells is a critical regulator of ovarian steroidogenesis and may be considered when addressing pathophysiologies associated with inappropriate steroid production and infertility in humans and animals.


Assuntos
Ovário , Progesterona , Feminino , Humanos , Animais , Ovário/metabolismo , Progesterona/metabolismo , Sistema de Sinalização das MAP Quinases , Corpo Lúteo/metabolismo , Estradiol , Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
16.
Dev Growth Differ ; 65(8): 481-497, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37505799

RESUMO

Since CRISPR-based genome editing technology works effectively in the diploid frog Xenopus tropicalis, a growing number of studies have successfully modeled human genetic diseases in this species. However, most of their targets were limited to non-syndromic diseases that exhibit abnormalities in a small fraction of tissues or organs in the body. This is likely because of the complexity of interpreting the phenotypic variations resulting from somatic mosaic mutations generated in the founder animals (crispants). In this study, we attempted to model the syndromic disease campomelic dysplasia (CD) by generating sox9 crispants in X. tropicalis. The resulting crispants failed to form neural crest cells at neurula stages and exhibited various combinations of jaw, gill, ear, heart, and gut defects at tadpole stages, recapitulating part of the syndromic phenotype of CD patients. Genotyping of the crispants with a variety of allelic series of mutations suggested that the heart and gut defects depend primarily on frame-shift mutations expected to be null, whereas the jaw, gill, and ear defects could be induced not only by such mutations but also by in-frame deletion mutations expected to delete part of the jawed vertebrate-specific domain from the encoded Sox9 protein. These results demonstrate that Xenopus crispants are useful for investigating the phenotype-genotype relationships behind syndromic diseases and examining the tissue-specific role of each functional domain within a single protein, providing novel insights into vertebrate jaw evolution.


Assuntos
Displasia Campomélica , Animais , Humanos , Xenopus laevis/metabolismo , Displasia Campomélica/genética , Xenopus/genética , Xenopus/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fenótipo , Genótipo
17.
Nat Cell Biol ; 25(8): 1185-1195, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37488435

RESUMO

During development, progenitors simultaneously activate one lineage while silencing another, a feature highly regulated in adult stem cells but derailed in cancers. Equipped to bind cognate motifs in closed chromatin, pioneer factors operate at these crossroads, but how they perform fate switching remains elusive. Here we tackle this question with SOX9, a master regulator that diverts embryonic epidermal stem cells (EpdSCs) into becoming hair follicle stem cells. By engineering mice to re-activate SOX9 in adult EpdSCs, we trigger fate switching. Combining epigenetic, proteomic and functional analyses, we interrogate the ensuing chromatin and transcriptional dynamics, slowed temporally by the mature EpdSC niche microenvironment. We show that as SOX9 binds and opens key hair follicle enhancers de novo in EpdSCs, it simultaneously recruits co-factors away from epidermal enhancers, which are silenced. Unhinged from its normal regulation, sustained SOX9 subsequently activates oncogenic transcriptional regulators that chart the path to cancers typified by constitutive SOX9 expression.


Assuntos
Células-Tronco Adultas , Proteômica , Animais , Camundongos , Células-Tronco Adultas/metabolismo , Diferenciação Celular , Cromatina/genética , Epigênese Genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
18.
Adv Sci (Weinh) ; 10(20): e2205804, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37296073

RESUMO

Neural stem cells (NSCs) derived from human pluripotent stem cells (hPSCs) are considered a major cell source for reconstructing damaged neural circuitry and enabling axonal regeneration. However, the microenvironment at the site of spinal cord injury (SCI) and inadequate intrinsic factors limit the therapeutic potential of transplanted NSCs. Here, it is shown that half dose of SOX9 in hPSCs-derived NSCs (hNSCs) results in robust neuronal differentiation bias toward motor neuron lineage. The enhanced neurogenic potency is partly attributed to the reduction of glycolysis. These neurogenic and metabolic properties retain after transplantation of hNSCs with reduced SOX9 expression in a contusive SCI rat model without the need for growth factor-enriched matrices. Importantly, the grafts exhibit excellent integration properties, predominantly differentiate into motor neurons, reduce glial scar matrix accumulation to facilitate long-distance axon growth and neuronal connectivity with the host as well as dramatically improve locomotor and somatosensory function in recipient animals. These results demonstrate that hNSCs with half SOX9 gene dosage can overcome extrinsic and intrinsic barriers, representing a powerful therapeutic potential for transplantation treatments for SCI.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Humanos , Ratos , Animais , Células-Tronco Neurais/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/metabolismo , Neurônios/metabolismo , Neurogênese , Cicatrização , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
19.
BMC Cancer ; 23(1): 557, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328795

RESUMO

BACKGROUND: Primary liver cancer is a malignant tumour of the digestive system, ranking second in cancer mortality in China. In different types of cancer, such as liver cancer, microRNAs (miRNAs) have been shown to be dysregulated. However, little is known about the role of miR-5195-3p in insulin-resistant liver cancer. METHODS AND RESULTS: In this study, in vitro and in vivo experiments were conducted to identify the altered biological behaviour of insulin-resistant hepatoma cells (HepG2/IR), and we proved that HepG2/IR cells had stronger malignant biological behaviour. Functional experiments showed that enhanced expression of miR-5195-3p could inhibit the proliferation, migration, invasion, epithelial-mesenchymal transition (EMT) and chemoresistance of HepG2/IR cells, while impaired expression of miR-5195-3p in HepG2 cells resulted in the opposite effects. Bioinformatics prediction and dual luciferase reporter gene assays proved that SOX9 and TPM4 were the target genes of miR-5195-3p in hepatoma cells. CONCLUSIONS: In conclusion, our study demonstrated that miR-5195-3p plays a critical role in insulin-resistant hepatoma cells and might be a potential therapeutic target for liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Insulina/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Tropomiosina/genética , Tropomiosina/metabolismo
20.
J Vet Med Sci ; 85(6): 680-690, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37150611

RESUMO

Pentosan polysulfate sodium (PPS) is a heparin-like polysaccharide that is applied as a therapeutic treatment for osteoarthritis (OA) in animals. This study investigated the efficacy of different molecular weights PPS (1,500-7,000 Da) on the phenotype regulatory and chondrogenic properties of canine articular chondrocytes. The cytotoxicity of PPS on chondrocytes was assessed using flow cytometry and 3-(4,5-dimehylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay. After 72 hr of exposure, PPS did not induce chondrocyte apoptosis, regardless of molecular weight. In addition, chondrogenic properties were determined according to the mRNA and protein levels in micromass-cultured chondrocytes. Quantitative polymerase chain reaction analysis confirmed that PPS promotes a chondrogenic phenotype in chondrocytes in a molecular weight-dependent manner, with significant upregulation of collagen type II alpha 1 chain, aggrecan, and SRY-box transcription factor 9 (SOX9) mRNA levels relative to those in the control. However, the collagen type I alpha 2 chain mRNA level simultaneously increased after 7,000 Da PPS treatment. PPS exposure also increased collagen type II and SOX9 protein production in a molecular weight-dependent manner and inhibited Akt phosphorylation in chondrocytes. Alcian blue staining indicated that PPS treatment enhanced proteoglycan deposition in micromass cultures, with stronger effects observed in 5,000 and 7,000 Da groups. Overall, these results indicate that PPS exerts protective effects on the chondrocyte phenotype and may represent a potential therapeutic target for OA treatment. Increasing the molecular weight of PPS could enhance these anabolic effects.


Assuntos
Cartilagem Articular , Doenças do Cão , Osteoartrite , Animais , Cães , Condrócitos/metabolismo , Poliéster Sulfúrico de Pentosana/farmacologia , Peso Molecular , Colágeno Tipo II/metabolismo , Fenótipo , Osteoartrite/tratamento farmacológico , Osteoartrite/veterinária , Células Cultivadas , RNA Mensageiro/metabolismo , Diferenciação Celular , Fatores de Transcrição SOX9/metabolismo , Doenças do Cão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA